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Abstract
Asymptotic two-pulse solutions of a modified (via attaching a nonlinear
derivative term) vector nonlinear Schrödinger equation (MVNSE) are analyzed
using the Hirota (bilinearization) method. This equation is known to describe
the propagation of ultra-short optical pulses in nonlinear fibers (in particular,
in the optical-crystal fibers). Some pulse-parameter regimes of applicability of
the solutions to study the pulse collisions are estimated. It is found, for these
regimes, that the collision of ultra-short vector pulses of almost equal velocities
results in a transformation of their polarizations similar as that of the Manakov
solitons whenever the pulse-interaction effects can be neglected.

PACS numbers: 05.45.Yv, 42.65.Tg, 42.81.Gs, 52.35.Sb

A modified nonlinear Schrödinger equation (MNSE) has been studied for over one decade
with the application to the coherent propagation of ultra-short (subpicosecond) optical pulses
[1, 2]. Earlier, it was used to analyze the self-steepening (optical shock formation) effect
which is not an inherent property of the dynamics of the ultra-short pulses however [3]. The
importance of the ultra-short pulse research has grown since the production of the photonic-
crystal nonlinear fibers began. Such fibers enable much higher compression of the optical
pulses than the conventional fibers [4, 5]. The modified vector nonlinear Schrödinger equation
(MVNSE)

iqj,t + qj,xx + µ

(
2∑

k=1

|qk|2
)

qj + iγ

[(
2∑

k=1

|qk|2
)

qj

]
,x

= 0, (1)

(j = 1, 2) is the proper equation of motion of the ultra-short pulse envelope (including the
polarization effects) for the case of random birefringence of the optical fiber (applicable also
to the case of a specific (non-random) nonlinear birefringence) [1, 6]. The MVNSE (with
µ = 0) is also useful in the plasma physics, where it describes polarized Alfven waves
[7]. Unfortunately, in contrast to the scalar MNSE [8], one did not manage to find explicit
multi-soliton solutions of its vector counterpart.
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On the other hand, collisions of usual (longer) optical pulses, vector solitons described
by the vector nonlinear Schrödinger equation (VNSE), result in changing their polarizations
with dependence on initial polarizations c(1), c(2) velocities 4ζ ′

1, 4ζ ′
2 and widths 1/ζ ′′

1 , 1/ζ ′′
2 of

the colliding solitons following the Manakov relation, [9],

c′
(1) = 1

χ

ζ ∗
1 − ζ2

ζ ∗
1 − ζ ∗

2

[
c(1) +

ζ2 − ζ ∗
2

ζ ∗
2 − ζ ∗

1

(c∗
(2) · c(1))c(2)

]
,

c′
(2) = 1

χ

ζ ∗
1 − ζ2

ζ1 − ζ2

[
c(2) +

ζ1 − ζ ∗
1

ζ2 − ζ1
(c∗

(1) · c(2))c(1)

]
,

(2)

where ζj ≡ ζ ′
j + iζ ′′

j , and

χ = |ζ1 − ζ ∗
2 |

|ζ1 − ζ2|
[

1 +
(ζ1 − ζ ∗

1 )(ζ ∗
2 − ζ2)

|ζ1 − ζ2|2 |c∗
(1) · c(2)|2

]1/2

. (3)

Recently, this effect has been observed, [10], and utilized in different concepts of the
information processing via collisions of vector solitons [11, 12]. The ultra-short pulses
propagating in the photonic-crystal fibers seem to be especially useful for data processing
and long-distance communication because of low losses of the intensity, thus, a long-time
coherence [4]. Since the one-pulse solutions of the MVNSE have the simple form of the MNSE
solution multiplied by a constant (unit) polarization vector, one is interested if the collisions
of the ultra-short pulses result in similar polarization transformation (without changing the
pulse velocities and widths) as that induced by the Manakov-soliton collisions. In the present
paper, I give a partial answer to this point relevant to a specific regime of parameters of the
colliding pulses. For small differences of the velocities and widths of the colliding pulses
(big enough, however, to exclude the pulse-interaction effects) and for small pulse velocities,
I predict that the one-hump solutions of the MVNSE transform their polarizations during the
collision following a rule similar to the Manakov one.

Looking for two-pulse solutions of the MVNSE let us perform a decomposition of this
equation following the Hirota (bilinearization) method [13]. Assuming that

q1 = gf ∗/f 2, q2 = hf ∗/f 2, (4)

one finds the MVNSE to be equivalent to the system of equations(
iDt + D2

x

)
g · f = 0,

(
iDt + D2

x

)
h · f = 0, (5a)

Dxf
∗ · f +

iγ

2
(|g|2 + |h|2) = 0, (5b)(

iDt + D2
x

)
f ∗ · f − µ(|g|2 + |h|2) + iγ (Dxg

∗ · g + Dxh
∗ · h) = 0, (5c)

f ∗D2
xf · f − µf (|g|2 + |h|2) − iγ (g∗Dxg · f + h∗Dxh · f ) = 0. (5d)

Here, Dt,Dx denote Hirota operators of differentiation over the time and position, respectively,
defined by

Dm
t Dn

xb(x, t) · c(x, t) ≡ (∂/∂t − ∂/∂t ′)m(∂/∂x − ∂/∂x ′)nb(x, t)c(x ′, t ′)|x=x ′,t=t ′ . (6)

Although equation (5d) is the trilinear one, we look for its solution in the form of the
Hirota expansion relevant to solutions of bilinear equations (similar as in the cases of the
decompositions of, e.g. Getmanov equation or Landau–Lifshitz equation [13, 14]).

Let us note that, unlike for the scalar MNSE, the bilinearization (5a)–(5d) does not lead
to an equation equivalent to the MVNSE for q ′

j = qjf/f ∗,

iq ′
j,t + q ′

j,xx + µ

(
2∑

k=1

|q ′
k|2

)
q ′

j + iγ

(
2∑

k=1

|q ′
k|2

)
q ′

j,x �= 0, (7)

(the scalar (gauge) transformed MNSE was solved (for µ = 0) in [15]).
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We find the exact two-pulse solution of the system (5b)–(5d) in the form

f = 1 + eη1+η∗
1+R1(µ + iγ k1) + eη2+η∗

2+R2(µ + iγ k2) + eη1+η∗
2+δ0(µ + iγ k1)

+ eη2+η∗
1 +δ∗

0 (µ + iγ k2) + eη1+η2+η∗
1+η∗

2 +R(µ + iγ k1)(µ + iγ k2),

g = α1 eη1 + α2 eη2 + eη1+η2+η∗
2+δ2(µ − iγ k∗

2) + eη1+η2+η∗
1+δ1(µ − iγ k∗

1),

h = β1 eη1 + β2 eη2 + eη1+η2+η∗
2 +δ′

2(µ − iγ k∗
2) + eη1+η2+η∗

1+δ′
1(µ − iγ k∗

1),

(8)

where

eRj ≡ |αj |2 + |βj |2
2(kj + k∗

j )
2

, eδ0 ≡ (α1α
∗
2 + β1β

∗
2 )

2(k1 + k∗
2)

2
,

eR ≡ |k2 − k1|2
4(k1 + k∗

1)(k2 + k∗
2)|k1 + k∗

2 |2

×
[
(|α1|2 + |β1|2)(|α2|2 + |β2|2)

(k1 + k∗
1)(k2 + k∗

2)
− (α1α

∗
2 + β1β

∗
2 )(α2α

∗
1 + β2β

∗
1 )

|k1 + k∗
2 |2

]
,

eδ1 ≡ (k2 − k1)

2(k1 + k∗
1)(k2 + k∗

1)

[
α2(|α1|2 + |β1|2)

k1 + k∗
1

− α1(α2α
∗
1 + β2β

∗
1 )

k2 + k∗
1

]
,

eδ2 ≡ (k1 − k2)

2(k2 + k∗
2)(k1 + k∗

2)

[
α1(|α2|2 + |β2|2)

k2 + k∗
2

− α2(α1α
∗
2 + β1β

∗
2 )

k1 + k∗
2

]
,

eδ′
1 ≡ (k2 − k1)

2(k1 + k∗
1)(k2 + k∗

1)

[
β2(|α1|2 + |β1|2)

k1 + k∗
1

− β1(α2α
∗
1 + β2β

∗
1 )

k2 + k∗
1

]
,

eδ′
2 ≡ (k1 − k2)

2(k2 + k∗
2)(k1 + k∗

2)

[
β1(|α2|2 + |β2|2)

k2 + k∗
2

− β2(α1α
∗
2 + β1β

∗
2 )

k1 + k∗
2

]

(9)

that is similar to the two-soliton solution of the (scalar) MNSE by Liu and Wang [8] and to
the two-soliton solution of the VNSE [16]. Here η1(2) ≡ k1(2)(x + ik1(2)t) + ηo1(2), Re k1(2) is
related to the inversion of the first-pulse (second-pulse) width, while Im k1(2) is related to the
first-pulse (second-pulse) velocity, and ηo1(2) denotes a constant connected to the initial phase
and position of the pulse. Inserting these functions into the left-hand sides of (5a), we arrive
at(
iDt + D2

x

)
g · f = iγ (k2 − k1)(α1β2 − α2β1)(e

η1+η2+η∗
1 β∗

1 + eη1+η2+η∗
2 β∗

2 )

+ e2η1+η2+η∗
1+η∗

2
γ 2k1|k2 − k1|2(α1β2 − α2β1)

2(k1 + k∗
1)

2(k1 + k∗
2)

2

× [k1α1(α
∗
2β

∗
1 − α∗

1β
∗
2 ) + k∗

1β
∗
1 (α1α

∗
2 + β1β

∗
2 ) − k∗

2β
∗
2 (|α1|2 + |β1|2)]

+ eη1+2η2+η∗
1+η∗

2
γ 2k2|k2 − k1|2(α1β2 − α2β1)

2(k2 + k∗
1)

2(k2 + k∗
2)

2

× [k2α2(α
∗
2β

∗
1 − α∗

1β
∗
2 ) − k∗

2β
∗
2 (α2α

∗
1 + β2β

∗
1 ) + k∗

1β
∗
1 (|α2|2 + |β2|2)],(

iDt + D2
x

)
h · f = iγ (k1 − k2)(α1β2 − α2β1)(e

η1+η2+η∗
1 α∗

1 + eη1+η2+η∗
2 α∗

2)

+ e2η1+η2+η∗
1+η∗

2
γ 2k1|k2 − k1|2(α1β2 − α2β1)

2(k1 + k∗
1)

2(k1 + k∗
2)

2

× [k1β1(α
∗
2β

∗
1 − α∗

1β
∗
2 ) − k∗

1α
∗
1(α1α

∗
2 + β1β

∗
2 ) + k∗

2α
∗
2(|α1|2 + |β1|2)]

+ eη1+2η2+η∗
1+η∗

2
γ 2k2|k2 − k1|2(α1β2 − α2β1)

2(k2 + k∗
1)

2(k2 + k∗
2)

2

× [k2β2(α
∗
2β

∗
1 − α∗

1β
∗
2 ) + k∗

2α
∗
2(α2α

∗
1 + β2β

∗
1 ) − k∗

1α
∗
1(|α2|2 + |β2|2)]

(10)

and see that the right-hand sides of (10) are equal to zero for the specific cases: when the
polarizations of both the pulses are identical (α1β2 −α2β1 = 0, then the solution can be found
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by studying the simpler (scalar) MNSE), or when the velocities and widths of the pulses are
equal (k1 = k2). In a general case, for Re kj Im kj < 0, the right-hand sides of (10) tend to
zero with t → −∞. Thus, we have found the asymptotic two-pulse solution of the MVNSE
(relevant when both the pulses are far away from each other) as the limit of the functions (8)

q1 = gf ∗/f 2 = α1q
(1) + α2q

(2),

q2 = hf ∗/f 2 = β1q
(1) + β2q

(2), (11)

q(j) ≡ eηj [1 + eηj +η∗
j +Rj (µ − iγ k∗

j )]

[1 + eηj +η∗
j +Rj (µ + iγ kj )]2

.

Denoting some pulse parameters as: xoj (the initial position, xoj = −(Re ηoj + Rj/2)/Re kj ),
vj (the velocity, vj = 2 Im kj ≡ 4ζ ′

j ), ζ ′′
j (the width inversion, ζ ′′

j = Re kj/2), the pulse
envelopes can be written in the form

(αj , βj )q
(j)(x, t) = (c(j)1, c(j)2)i4 · 21/2ζ ′′

j ei2ζ ′
j x+i4(ζ ′′2

j −ζ ′2
j )teP ∗

j /2−Pj

× e−2ζ ′′
j (x−xoj −4ζ ′

j t)−P ∗
j /2 + e2ζ ′′

j (x−xoj −4ζ ′
j t)+P ∗

j /2

[e−2ζ ′′
j (x−xoj −4ζ ′

j t)−Pj /2 + e2ζ ′′
j (x−xoj −4ζ ′

j t)+Pj /2]2
, (12)

where Pj ≡ ln[µ + iγ 2(ζ ′′
j + iζ ′

j )]. The pulse polarizations c(j) defined in a similar way as for
the Manakov solitons are related to αj , βj by the formula

ic(j) ≡ i(c(j)1, c(j)2) = (αj , βj )eiIm ηoj√|αj |2 + |βj |2
. (13)

We will show that (8) is an approximate solution of the MVNSE in a certain time window.
The range of this time window is wider the smaller the differences between the velocities and
width of the pulses are.

For k1 = k2, the solution (8) is relevant for t ∈ (−∞,∞) but the pulses never collide
under this condition. Considering the colliding pulses, one sees that the modules of the right-
hand sides of (10) increase almost linearly with |	ζ ′| and with |	ζ ′′|, (	ζ ′ ≡ ζ ′

2 − ζ ′
1,	ζ ′′ ≡

ζ ′′
2 − ζ ′′

1 ), for any fixed time point. However, at the final moment of the pulse collision
t = tc, (tc ∼ max{|1/ζ ′′

1 |, |1/ζ ′′
2 |}/|	ζ ′| for 	xo ≡ xo2 − xo1 ≈ 0, t = −tc corresponds

to the beginning moment of the collision), the modules of the right-hand sides of (10)
increase exponentially with the ratio (|ζ ′

1| + |ζ ′
2|)/|	ζ ′|. Taking this ratio as a constant

(|	ζ ′| ∼ (|ζ ′
1| + |ζ ′

2|)/2), the modules of the right-hand sides of (10) can be thought of as
linear in |	ζ ′| and |	ζ ′′| ones. Then, for small |	ζ ′|, |	ζ ′′|, and for small pulse velocities,
|	ζ ′| ∼ (|ζ ′

1| + |ζ ′
2|)/2, (8) is the approximate solution to the MVNSE relevant to the

collision regime of time |t | < tc. Since separate (after the collision) pulses propagate almost
independently (because the one-pulse solutions of (1) are exact), we evaluate the collision-
induced polarization transform using the limit of the functions (8) with t → ∞. At this
limit

q1 ≈ gf ∗/f 2 = eδ2q(1)′ + eδ1q(2)′,

q2 ≈ hf ∗/f 2 = eδ′
2q(1)′ + eδ′

1q(2)′,

q(1)′ = eη1(µ − iγ k∗
2)

eR2(µ − iγ k∗
2) + eη1+η∗

1+R(µ − iγ k∗
1)(µ − iγ k∗

2)

[eR2(µ + iγ k2) + eη1+η∗
1 +R(µ + iγ k1)(µ + iγ k2)]2

,

q(2)′ = eη2(µ − iγ k∗
1)

eR1(µ − iγ k∗
1) + eη2+η∗

2+R(µ − iγ k∗
2)(µ − iγ k∗

1)

[eR1(µ + iγ k1) + eη2+η∗
2 +R(µ + iγ k2)(µ + iγ k1)]2

.

(14)

Writing the envelopes of both the pulses of the above superposition in the form (12), one finds
that the collision of two vector pulses characterized by the polarizations c(1), c(2) and by the

4
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wavenumbers ζ1, ζ2, respectively (ζj ≡ ζ ′
j + iζ ′′

j ), results in the change of the polarizations of
both the pulses according to the transformation

ic′
(1) =

(
µ − iγ k∗

2

µ + iγ k2

)2
(eδ2 , eδ′

2)eiIm ηo1√
|eδ2 |2 + |eδ′

2 |2
= eiθ1

i

χ

ζ ∗
1 − ζ2

ζ ∗
1 − ζ ∗

2

[
c(1) +

ζ2 − ζ ∗
2

ζ ∗
2 − ζ ∗

1

(c∗
(2) · c(1))c(2)

]
,

ic′
(2) =

(
µ − iγ k∗

1

µ + iγ k1

)2
(eδ1 , eδ′

1)eiIm ηo2√
|eδ1 |2 + |eδ′

1 |2

= eiθ2
i

χ

ζ ∗
1 − ζ2

ζ1 − ζ2

[
c(2) +

ζ1 − ζ ∗
1

ζ2 − ζ1
(c∗

(1) · c(2))c(1)

]
, (15)

where χ is defined by (3). Up to the phase factor eiθ1(2) ≡ (µ − iγ k∗
2(1))

2/(µ + iγ k2(1))
2, the

transformed polarization is similar to that of the Manakov soliton.
For the small velocity difference, in the regime |	ζ ′| 
 |ζ ′

j |, the pulse-interaction effects
are known to play an important role in the soliton dynamics, especially for an imperfect
(randomly birefringent) optical fiber. For the regime we consider, |	ζ ′| ∼ (|ζ ′

1| + |ζ ′
2|)/2, it is

interesting if two differently polarized pulses interact stronger than identically-polarized ones.
If it was so, the interaction effects (stopping or accelerating the relative motion of the pulses)
could disturb our picture of the soliton-like pulse collisions while the identically-polarized
pulses are known to collide like solitons of the MNSE. In order to determine the way in which
the mutual polarization tilt of the pulses influences the strength of the interaction, we write
the equations of motion of the pulse parameters following Keener, McLaughlin, Karpman and
Solov’ev [17] who solved such equations perturbatively. We note that relevant equations for
vector (Manakov) solitons [18] and for MNSE solitons [19] have been studied recently. Since
the pulse collisions are slow, we are unable to detect collision-induced transformations of the
pulse parameters solving their equations of motion because we cannot perform summation
of all the terms of the perturbation expansions. Our aim is just to estimate if their changing
is faster or slower than during the collision of MNSE solitons. Let us write the two-pulse
solution of the MVNSE as

q = q(1) + δq(1) + q(2) + δq(2), (16)

where q(j) = (αj , βj )q
(j) relate to the initial pulse envelopes while their deviations from the

initial shape are connected to a slow change of the pulse parameters via

δq(j)

dt
= ei�(j)

(
q

′(j)

,ζ ′
j

dζ ′
j

dt
+ q′(j)

,xoj

dxoj

dt
+

2∑
k=1

q′(j)
,ϕjk

dϕjk

dt
+

2∑
k=1

q
′(j)

,ζ ′′
jk

dζ ′′
jk

dt

)

+ iq(j)

(
�

(j)

,ζ ′
j

dζ ′
j

dt
+ �(j)

,xoj

dxoj

dt
+

2∑
k=1

�
(j)

,ζ ′′
jk

dζ ′′
jk

dt

)
. (17)

Here, the parameters ζ ′′
jk and ϕjk are defined by ζ ′′

jk eiϕjk ≡ c(j)kζ
′′
j , and q′(j) = q(j)f (j)/f (j)∗ ≡

q(j) e−i�(j)

. Since q(j) are exact one-pulse solutions of the MVNSE, inserting q into (1), one
finds the dynamical equations of δq(j) up to the first order of perturbation

i
δq(1)

dt
= −

(
µ + iγ

∂

∂x

)
[(q(1) · q(2)∗ + q(1)∗ · q(2))q(1) + |q(1)|2q(2)],

i
δq(2)

dt
= −

(
µ + iγ

∂

∂x

)
[(q(2) · q(1)∗ + q(2)∗ · q(1))q(2) + |q(2)|2q(1)].

(18)

Here the perturbation of the pulse parameters is due to the collision with the second pulse
whose velocity and width are close to those of the first one. Following [17–19], using a set

5
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of orthogonal functions, one is able to find equations of motion of all the pulse parameters
via projecting the above equations on some Hilbert-space directions. I simplify the original
approach utilizing a proposal of Lai and Haus [20]. I find a ‘canonical’ set of functions (similar
to that used in [21])

q̃
(j)

k,xoj
≡ q

′(j)

k,xoj
, q̃

(j)

k,ϕjl
≡ q

′(j)

k,ϕjl
,

q̃
(j)

k,ζ ′
j
≡ q

′(j)

k,ζ ′
j
−

(
2xoj − 1

2ζ ′′
j

Re Pj +
i

2
Pj,ζ ′

j

)
q

′(j)

k,ϕjk
+

1

4ζ ′′
j

Pj,ζ ′
j
q

′(j)

k,xoj
, (19)

q̃
(j)

k,ζ ′′
j l

≡ q
′(j)

k,ζ ′′
j l

−
(

ζ ′′
jk

4ζ ′′3
j

Re Pj − 1

4ζ ′′
j

Pj,ζ ′′
j l

)
q

′(j)

k,xoj
−

(
iδkl

ζ ′′
j l

+
i

2
Pj,ζ ′′

j l

)
q

′(j)

k,ϕjl

satisfying
∫ ∞
−∞

∑2
k=1

[
q̃

(j)∗
k,A (x, t)q̃

(j)

k,B(x, t) − c.c.
]
dx = 0 for all the pairs of the pulse

parameters (A,B) except (xoj , ζ
′
j ) and (ϕjk, ζ

′′
j l),

Im
∫ ∞

−∞

2∑
k=1

[
q̃

(j)∗
k,xoj

(x, t)q̃
(j)

k,ζ ′
j
(x, t) − c.c.

]
dx = 16e−Re Pj Im Pj csec(Im Pj ),

Im
∫ ∞

−∞

2∑
k=1

[
q̃

(j)∗
k,ϕjl

(x, t)q̃
(j)

k,ζ ′′
jm

(x, t) − c.c.
]

dx = ζ ′′2
j l ζ ′′

jm

ζ ′′3
j

8e−Re Pj Im Pj csec(Im Pj ),

(20)

and
∫ ∞
−∞

∑2
k=1

[
q̃

(j)∗
k,A (x, t)q

′(j)

k (x, t) + c.c.
]

dx = 0 for all the pulse parameters A except ζ ′′
jm,

∫ ∞

−∞

2∑
k=1

[
q̃

(j)∗
k,ζ ′′

jm
(x, t)q

′(j)

k (x, t) + c.c.
]

dx = −ζ ′′
jm

ζ ′′
j

8e−Re Pj Im Pj csec(Im Pj ). (21)

Multiplying the left- and the right-hand sides of (18) by e−i�(j)(x,t)q̃
(j)∗
,A (x, t), (A = xoj , ζ

′
j , . . .),

integrating the products over x, and using (20), (21), �
(j)
,ϕjl

= 0, one finds the equations of
motion of the pulse parameters. As follows from the analysis of the right-hand sides of
equations (18) the pulse parameters are changing with time faster the bigger value is taken
by |c(1) · c∗

(2)|. Thus, the pulse-interaction strength decreases with deviating mutual pulse
polarization tilt from the parallel one. In particular, let us note that considering the interaction
of perpendicularly polarized pulses, (c(1) · c∗

(2) = 0), the first-order interaction terms vanish
and one has to include the terms of the second order of interaction on the right-hand sides
of (18).

We complete our discussion of the dynamical equations of the ultra-short pulse
propagation mentioning the role of the third-order dispersion effects which are completely
neglected in (1). These effects become important in the case of fibers with a close to zero
group velocity (vanishing second-order dispersion). However, adding the term iβqj,xxx/3 to
the left-hand side of (1), one is able to find exact multi-soliton solutions of the resulting vector
equation for β = γ /µ, [22]. In [23], it has been shown that this relation (β = γ /µ) holds
for the ultra-short pulses within a certain microscopic model of the photon interactions in the
fiber (the instantaneous Kerr interaction). Following [24], this microscopic model determines
the pulse envelopes to be described with similar functions as those satisfying the NLSE. In the
present work, I avoid restricting the considerations to any single quantum model.

It has been shown that, although the MVNSE solution cannot be written in the form of the
Hirota (multi-soliton) expansion in general (except for the cases of identically polarized pulses
or of a train of pulses with similar widths), the Hirota method enables one to find an asymptotic
two-pulse solution. For some velocity difference and pulse-width difference regimes, these
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solutions are useful for describing the pulse collisions and they allow one to find the collision-
induced transform of the pulse-polarization. The only consequence of including the nonlinear
differential term into the pulse-envelope equation of motion on the collision-induced pulse
polarization transform is an additional (compared to the Manakov transform for the VNLSE
solitons) multiplication of the outcome polarizations by phase factors.
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